brewing

I, Pencil is a classic economics essay from 1958 by Leonard Read about the complexity of making a pencil. The iconic yellow #2 seems so simple, yet no one person could make it on their own (e.g., harvest the rubber, synthesis the polymers and pigments for the eraser, create the yellow paint, precisely cut the wood and graphite, mine and forge the metal band etc. ). The global economy doesn't have any person or group coordinating all of this activity, but to earn money people and companies fill niches, specialize, and compete to buy and sell in ways that creates things of immense complexity requiring the sum work of hundreds of people across continents so you can buy a pencil for $.25. This video gives a more hands-on view of what it takes to make a chicken sandwich when you don't buy anything from a supermarket.

It is tempting to say that beer isn’t like that. After all, each all-grain batch starts with the four basic ingredients and we do the rest… sure it would be a challenge to grow and malt barley, harvest and dry hops, isolate/propagate wild yeast, and haul water from a local stream, but what vessels would you use to boil/ferment? What about sanitizer, minerals, clarifiers, compressed CO2?

What follows is a high-level overview of what is required to brew a single batch of beer at Sapwood Cellars. Obviously, you could keep digging deeper into each one of these, peeling back layer-after-layer to the inputs of each input (e.g., the shoes that the hop harvester was wearing). I’ll arbitrarily stop where I lose interest. Needless to say though, the work of thousands in not millions of people goes into each of our batches. Scott and I just get the credit (or blame) because we're the ones at the end of the chain!

Ingredients

Water

Our water comes from Liberty Reservoir. From there it goes to Baltimore’s Ashburton water treatment plant. Baltibrew posted a nice series on the Baltimore water system. Luckily for us the existing minerals are mostly beneficial to the character of our beer. The carbonate is a bit higher than we’d like, but not by enough to require the waste of reverse osmosis.

Once pipes take it to the brewery it passes through a carbon filter to remove chlorine, and then an on-demand hot water heater. The fuel is natural gas piped into the brewery by BG&E (by way of fracking or older methods, and then refining). From there the water travels through a hose to our hot liquor tank where an electric element allows us to adjust the temperature. The electricity comes from a mix of fossil fuels, nuclear, and ~5% renewables.

To adjust the mineral content of the water, we add calcium chloride (from limestone-hydrochloric acid reaction or natural brine concentration) and calcium sulfate (harvested and refined from gypsum rock deposits). In addition, we add 75% phosphoric acid to adjust the pH of the water. Phosphoric acid is usually produced by combustion, hydration, and demisted from three ingredients: phosphorus, air, and water.


Grains

The grain we mash is a mixture of barley, wheat, oats, and rye depending on the beer. These are grown primarily on farms in North America and Europe. It is then soaked, sprouted, dried, and kilned by a maltster. The precise equipment required varies by malt and producer. In some cases it is a large industrial operation, in others the malt is still manually turned. The bulk of our base malt is Rahr brewer’s 2-row from Minnesota, but in our first order we also had sacks from Briess, Chateau, Simpsons, Crisp, Best etc. Most of the unmalted flaked grains (steamed and rolled to gelatinize their starches) are from Grain Millers.

We decided to hold-off on buying our own mill, to save the cost at the start… but after a few brews I can say a mill and auger are in our near future. We order our grains from Brewers Supply Group, which pre-mills the grain. We also occasionally add a few sacks to a Maryland Homebrew order from Country Malt.

Once we’re done with the now “spent” grain, they are picked-up by Keith of Porch View Farms. He feeds it to his animals as most of the carbohydrates are extracted into the wort, but proteins remain.


Hops

Our hops are grown throughout the higher latitudes of the globe, primarily the Pacific Northwest of the United States, but also Australia, Germany, and Czech Republic. The hops are first stripped from their bines, dried in an oast, and then baled. After selection, various lots are blended to create a consistent product and the hops are pulverized and pelletized. They are then vacuum-packed in mylar and stored cold to preserve their aromatics. Our hops primarily came from Hop Havoc, but we’re working on getting contracts for the upcoming harvest.


Yeast

Most of the yeast we’re using are the decedents of yeast that have been fermenting beer for hundreds or thousands of years. A couple hundred years ago their ancestors were part of a mixed-culture at breweries in England and Belgium, only to be lucky (and talented) enough to be isolated as a pure culture that gained success. Our Saccharomyces cerevisiae so far has come from RVA, Fermentis, and Lallemand for our “clean” beers. These needed to be isolated, propagated, and in some cases dried.

The sour and wild beers are too complex to track. They come from labs, bottle dregs, and a house culture. They may have come via a barrel, the breeze, an insect, or any number of other vectors into a brewery or labs. For example the Hanseniaspora vineae we are fermenting a hoppy sour for Denizen's Make It Funky festival came from Wild Pitch Yeast which isolated it from tree bark.


Fruit

We don’t have any beers far enough along for fruit, but we’re planning to source as much of it as we can directly from local farms and orchards. Most fruit is at its best when it is picked ripe and used quickly. I'm sure we'll use dried fruit, aseptic purees, juices, and freeze-dried fruits depending on quality, availability, and desired results as well. The first batch will probably be a tart saison on grape pumace (the pressed skins) from a local natural winery.


Other Consumables

Gas

Carbon dioxide is usually produced as a byproduct of some other activity (e.g., hydrocarbon processing). Our CO2 is stored in a 750 lb tank in a liquid state. We use it to carbonate and serve beer. It isn't economical at our scale to recapture the CO2 released by fermentation. Our supplier is Robert’s Oxygen.

As the air on Earth is 70% nitrogen it is usually concentrated with the use of a nitrogen generator. These rely on a membrane that allows nitrogen through. We need nitrogen to help push the beer through the long-lines from our walk-in to the tasting room (pure CO2 would lead to over-carbonation at those pressures). As the second most abundant gas in the atmosphere, oxygen generation uses similar technologies. We pump .5L/minute into the wort as it exits the heat exchanger, the yeast quickly uses it to create sterols for healthy cell walls when they bud. We get these two gases in large cylinders that are swapped out.

Chemicals

We need cleaners like caustic (sodium hydroxide) to remove organic deposits, and a phosphoric-nitric acid blend to remove inorganic beer stone and passivate the stainless steel. For sanitation we use iodophor for fittings in buckets, and peracetic acid for the tanks. These are made in a variety of industrial processes that I’m totally unaware of. Our chemicals are provided by Zep/AFCO.

Clarifier

Whirlfloc G helps proteins clump together in the last 15 minutes of the boil to be left behind. It is derived from Irish moss (seaweed) that is dried and granulated. As a vegan brewery, no gelatin or isinglass for us.

Barrels

Oak barrels start as oak trees. They are processed into planks, and then purchased by a cooperage which dries (either in a kiln or naturally). They are then assembled into barrels with metal hops, toasted, and sealed. From there they go to vineyards and distilleries that age their products in them. Beer is best in barrels that have already lost much of their oak character, so we buy them from other producers. A small amount of the wine or spirit is still present in the wood, providing a moderate contribution to the first batch, diminishing with each additional batch.


Equipment

The stainless steal for the vast majority of our equipment comes from China. Our brewhouse was constructed by Forgeworks in Colorado. Our fermentors and bright tank from Apex and DME in China. Our keg washer from Colorado Brewing.

The cooling of the fermentors is accomplished by a glycol chiller from G&D Chillers in Oregon. The ethylene glycol itself comes from ethylene and oxygen. The chiller also assists chilling the wort with our two-stage Thermaline heat exchanger (primarily more stainless steel). The copper pipes that carry the glycol are insulated with Armaflex. The flow of the glycol to individual tanks is controlled by electronic temperature sensors and solenoid valves.

Other equipment includes hydrometer, refractometer, pH meter, hoses, gaskets, and all manner of other valves and fittings.

For the space itself there was already plenty of concrete, bricks and metal. We hired Kolb Electric and B&B Pipefitters to do the installation of the bulk of the wires, pipes, and connections.

There is also everything that goes into serving a beer once it is ready. Kegs (Corny kegs for the sours and infusions, sanke for the standard clean beers), stainless steel fittings, beer lines, glasses (including the printed logo and the glasswasher) etc.


What’s the Point?

I don’t really have one. To me it is just remarkable how much of the complexity of brewing a batch of beer is now hidden in the inputs. I know how to brew beer at my house or a brewery, but if you put me out in the woods even with all the ingredients, I couldn’t brew a batch. Thinking about what is required for each batch makes me appreciate how nice it is to live in a time when I can brew beer as simply as going online and ordering the equipment and ingredients I want. It also shows me how much I still have to learn about making beer.

At the same time, it means that beers everywhere are mostly separated by the choices the brewer makes rather than the availability of ingredients. The exchange of information accelerated by the Internet. I hope there continue to be regional variations, specialties, and preferences. Traveling isn't as exciting when everyone brews NEIPA and pastry stouts.


0 Comments
There are a lot of IPA drinkers out there, but I get the feeling that there are just as many people who would enjoy the fruity-tropical flavors in New England IPAs, but were scared off by the IBU-arms-race of earlier this decade. I wanted to develop a session beer for Sapwood Cellars that showcases fruit-salad hoppiness without assertive bitterness. Sort of a Belgian white, with hops instead of spices. The result is a beer we're brewing 10 bbls of today... Ziparillo!

Dry hopping mid-fermentation is a great technique for chasing away raw-green hop aromatics that turn-off some drinkers. The problem is that adding hops early makes harvesting yeast far more difficult. Our solution was to use dried yeast. For a fraction of the price of a liquid pitch (~$60 for 500 g dried) it means we don't feel bad not cropping and repitching. Dry yeast also allows for easy strain blending by weight. In this case the test batch was 85% S-04 and 15% WB-06. The goal was to support the fruity hops with a little banana from the hefeweizen strain. An idea I first tried in my American Oat Ale.


The grist is a callback to what we developed for Modern Times Fortunate Islands, still my favorite of their regular offerings. The grains were in turn inspired by Three Floyds Gumballhead. We decided to go a bit lighter on the wheat until we get used to how large amounts of huskless grains lauter on our Forgeworks brewhouse. Hot-side hopping is a single dose of Cascade in the whirlpool. A classic variety with a good blend of oils, but without excessive alpha acids (or cost). Despite that, for the up-scale we're going to lower the whirlpool temperature to ~195F with a barrel of cold water at flame-out to keep the IBUs under 20. Dry hopping with Amarillo for stonefruit aroma.

Hefeweizen yeast, CaraVienna, Cascade, and Amarillo is a combination I tried back in 2010 for this Hoppy Hefeweizen. Not the same intended balance on that batch, but a similar palate of flavors.



The wrinkle in this test batch was that I split it pre-boil. I've been editing Scott's draft for "The New IPA" and the research suggested that many hop oils peak very quickly at higher temperatures and then dissipate. So I split the batch, half with a 20 IBU addition at 60 minutes followed by a flame-out addition immediately after turning on the immersion chiller. The other half I added a hop-stand/whirlpool addition allowing it to sit for 45 minutes before starting the chill. I even left the heat on low to better replicate the slow cooling of a commercial-scale whirlpool.

Going in I was suspicious. I'd changed from quick-chilling to hop-stands a few years ago, and felt that my beers had gotten a better more saturated hop flavor. The beers came out surprisingly similar, but not exactly the same.

Ziparillo - Quick Chill

Smell – Clean yeasty-doughy nose. Banana. Cascade grapefruitiness shines through as the dominant hop character. Certainly reminds me most of hoppy hefeweizens that I’ve brewed previously. Surprising how much yeast character there is from a low percentage of WB-06.

Appearance – Pale-gold, mildly hazy of the standard hefeweizen type. Not milky-haze. Good head retention and cling.

Taste – Bitterness is present, a bit higher than 20 IBUs in my estimate. Crisp finish with some lingering hop resin. Amarillo comes in a bit towards the end, apricot. Odd that I get the kettle hops in the nose and the dry hops in the flavor. The quick chill seems to have imparted a more dry-hop like character. Dry, with a finish that reminds me of some sort of herbal spritzer?

Mouthfeel – Snappy, good firm carbonation, but not as high as a traditional hefe. Dry, slightly tannic finish.

Drinkability & Notes – A nice session beer. The polyphenols from the early-boil addition may be making the bitterness come-across higher than the calculated IBUs would suggest.

Changes for Next Time – Drop the bittering addition to 10 IBUs, and this would be much closer to the balance I was looking for. Nice as is, but likely too bitter for many hop-phobes. Yeast character is a bit distracting.

Ziparillo - Hop Stand

Smell – Similar, but the yeast character comes across as leaning more bubblegum than banana. Slightly more phenolic as well, peppery. Hops are better integrated into the yeast character or maybe just less assertive. I get honeydew melon.

Appearance – Identical. In this case the timing of the boil hops and speed of chilling doesn’t seem to have effected clarity.

Taste – Bitterness seems lower/smoother, and the finish rounder despite the same calculated IBUs. Like the nose the line between fruity yeast and hops is less distinct than the other version. There is more banana than in the nose, but it is still relatively subdued. Hops are bright and citrusy.

Mouthfeel – Smoother, less tannic. Coating compared to the other half. That isn’t a character that necessarily sounds beneficial to a session beer, but in this case it makes it easier and more pleasant to drink.

Drinkability & Notes – Closer to what I was looking for, the hops and yeast meld together into a pleasant fruit salad. Rather than a generic fruitiness throughout the effect is different flavors from nose and mouth, evolving as it warms. One friend noted that it has sort of an Allagash White thing going on, which was exactly my intent.

Changes for Next Time – We’ll be cutting the WB-06 from 15% to 7.5% in the big batch. The taller fermentor should suppress ester production as well. We’ll add a barrel of cold water at the end of the boil to lower the temperature and further smooth the hop bitterness contributed by the whirlpool addition.


Recipe

Batch Size: 12.00 gal
SRM: 4.8
IBU: 18.3
OG: 1.048
FG: 1.008
ABV: 5.25%
Final pH: 4.60
Brewhouse Efficiency: 72%
Boil Time: 60 mins

Fermentables
-----------------
68.2 % - 15 lbs Rahr 2-Row Brewer's Malt
22.7 % - 5 lbs Briess Red Wheat Malt
6.8 % - 1.5 lbs Briess Caravienne
2.3% - .5 lbs Rice Hulls

Mash
-------
Mash In - 45 min @ 158F

Hops
-------
V1
1.00 oz Cascade (Pellets, 5.5% AA) @ 60 min
3.50 oz Cascade (Pellets, 5.5% AA) @ Flame-Out
2.00 oz Amarillo (Pellets, 9.2% AA) @ Dry Hop Day 2

V2
3.50 oz Cascade (Pellets, 5.5% AA) @ Whirlpool 45 min
2.00 oz Amarillo (Pellets, 9.2% AA) @ Dry Hop Day 2

Other
--------
1 Whirlfloc Tablet @ 5 min

Water
-------
18.00 g Calcium Chloride
5.50 g Gypsum (Calcium Sulfate)
9.00 tsp Phosphoric Acid 10%

Calcium
Chloride
Sulfate
Sodium
Magnesium
Carbonate
140
170
100
15
10
90

Yeast
-------
22 g SafAle English Ale S-04
4 g Safbrew Wheat WB-06

Notes
-------
Brewed 8/5/18

5.28 at mash temperature after all additions (~5.5 corrected to room temperature).

Split between two boils:

1. 1 oz of Cascade @60 min, and 3.5 oz of Cascade with a quick chill at flame-out (added hops right after starting IC).

2. 3.5 oz of Cascade with a whirlpool at 212F (with heat) for 45 minutes... mostly stayed 190-200F.

Chilled to 68F, pitched 1 pack of S-04 and 2 g of WB-06 into each (no rehydration). Shook to aerate.

Same fermentation, beer temp 65F.

8/7/15 Dry hopped ~36 hours after pitching. Set beer temp to 68F to continue fermentation.

Kegged 8/16/18

I get a commission if you buy something after clicking the links to MoreBeer/Amazon/Adventures in Homebrewing/Great Fermentations!
0 Comments
I've brewed a surprising number of beers with ingredients grown on our .1 acres of Washington, DC. Including hops, cherries, juniper, ground ivy, mulberries... and recently fermented acorns! Rather than showcase a single ingredient though, I wanted to brew an estate beer with five ingredients grown and harvested on our land!

Aged homegrown Cascade hops in the boil.

The extent of the influence of aged hops on sour beer is still a bit underestimated. While the generally stated goal is preventing rapid souring by Lactobacillus in a traditionally fermented lambic, what they add to the flavor and what particular characteristics of the hops best serve this isn't widely studied. There are a few studies that oxidation can boost certain fruity aromatics. Which has lead Scott to threaten to use old hops on the hot-side for a NEIPA... he promised to do a test batch before brewing a 10 bbl batch on the new Sapwood Cellars brewhouse.

I thought it would be fun to brew with aged Cascades from the bines in my backyard, especially because fresh they didn't have a huge aroma. They'd been sitting open in my basement since they were dried a few years before. 

Flour slurry pouring in.

I don't have the space or effort to grow or malt grain, so I took the easy way out and brewed with wheat malt extract (a blend of 65% wheat malt 35% barley). I'd had good results from extract lambics previously, but this time in addition to maltodextrin I added wheat flour slurry to the boil. Mixing the flour with cold water prevents it from clumping when it touches the boiling wort. A turbid mash pulls starch from the unmalted wheat into the boil, which eventually feeds the various microbes in the late-stages of fermentation. The microbes must have enjoyed it as the resulting beers are completely clear.

All of the frozen berries (cherries, blackberries, raspberries, and mulberries.

Fruit was provided by our four berry trees/bushes. Sour cherry, blackberry, raspberry, and mulberry. To keep things easy I added roughly equal amount of each (other than the raspberries). I briefly froze most of the fruit, but I added the raspberries a small handful at a time as they ripen slower than the rest. I only had enough of each for one gallon of beer, as most of the rest of the fruit was spoken for. The leftover beer went onto local plums!

Video Review



Backyard Berries

Smell – Cherry and raspberry lead, not surprising as they are more distinct than the blackberry and mulberry. There is an underlining wine-iness that likely comes from the rest of the fruit. The base beer behind the fruit doesn't make itself known other than a subtle maltiness.

Appearance – Clear garnet on the first pour, a little haze when I emptied the bottle into the glass. Alright head retention thanks to the wheat.

Taste – Reminds of the nose with raspberry up front and cherry jam into the finish. Not as bright and fresh as it once was, but still reasonably fresh. The malt and hops don’t add a huge amount of character, but they support the fruit. The Wyeast lambic blend similarly stays mostly out of the way, adding edge complexity without trying to fight through the fruit.

Mouthfeel – Not a thick beer given the relatively low OG, and all of the simple sugars from the fruit. Solid carbonation, CBC-1 did a good job despite the acidity.

Drinkability & Notes – The combination of four berries works surprisingly well to my palate. They play together without becoming generic fruitiness. The base beer is unremarkable, but that’s fine in a beer where the fruit is the star.

Changes for Next Time – Would be nice to brew more than a gallon, but otherwise my only real changes would be to go all-grain.

The finished mixed-berry sour beer.

Plum-Bus

The rest of the batch went onto a two varieties of local plums. I've brewed with plums before in a dubbel. I wasn't sure about plums in a pale beer, but after trying spectacular examples from Tilquin and Casey I was convinced!

Smell – Clear it isn’t a kettle-soured fruit-bomb, lots of lemon pith and mineral along with the moderate fruit contribution. Plums aren’t nearly as aromatic as the more common sour beer fruits, but they add a depth without covering up the base beer.

Appearance – Beer is more rusty-gold than purple. Clear despite the flour. Thin white head, but this bottle appears less carbonated than the last few I’ve opened.

Plum sour beer.

Taste – Tangy plum skin, apricot, and lemon. Beautiful blend of fruit and beer. Wyeast Lambic Blend with dreg-augmentation again does a really nice job. Strong lactic acid without any vinegar or nail polish. Finish is moderate funk, hay, and overripe stone fruit.

Mouthfeel – Light, but not thin. Carbonation is too low, maybe the cap-job on this one wasn’t perfect.

Drinkability & Notes – Delicious. The plum could be a little juicier and fresher, but it works well. Sad I didn’t leave any of this half unfruited for comparison.

Changes for Next Time – I’d like to keep experimenting with other plum varieties in beer. Glad the pale base worked out well. Despite “plum” being a common descriptor for darker Belgians, actual plums don’t shine with all of that malt.

Defrosting plums in a 3 gallon Better Bottle.

Recipe

Batch Size: 10.00 gal
SRM: 5.5
IBU: 5.3
OG: 1.046
FG: 1.006/1.006
ABV: 5.25%
Final pH: 3.45/3.45
Boil Time: 90 mins

Fermentables
----------------
92.3% - 9 lbs Breiss Bavarian Wheat DME
5.1% - .5 lbs Maltodextrin Powder
2.6% - .25 lbs King Arthur All Purpose Flour

Hops
-------
2.50 oz - Homegrown Cascade: Aged 3-4 Years (Whole, ~1.00% AA) @ 90 min

Yeast
-------
Wyeast Belgian Lambic Blend
or
Omega OYL-218 - All The Bretts
Omega OYL-057 - HotHead Ale

Notes
-------
Brewed 1/15/17

Hops were homegrown and aged open over several years.

Fermented and aged in 6 gallon BetterBottle without transfering. Added some various dregs over the course of fermentation.

7/21/17 Filled a 1 gallon jug with the Wyeast half onto 6 oz each homegrown sour cherries, blackberries, and mulberries (plus maybe an ounce of raspberries - maybe 4 oz total over a couple months). The remainder went onto 3 lbs of methly plums.

8/24/17 Added an additional 1.75 lbs of Castleton plums to the plum portion

12/14/17 Bottled the 2.75 gallons of the plum with 61 g of table sugar and rehydrated CBC-1. Bottled the .8 gallons of backyard fruit with 21 g of table sugar and CBC-1.

All the fruit growing in my backyard!
0 Comments